STATISTICS (C) UNIT 1 TEST PAPER 5

 Four pairs of positive bivariate data (x, y) are such that the product moment correlation coefficient between them is *r* and Spearman's coefficient of rank correlation between them is *ρ*.
Sketch scatter diagrams to illustrate each of the following possible situations :

(i)
$$r = -1, \rho = -1,$$
 [2]
(ii) $0 < r < 1, \rho = 1.$ [2]

2. A child's toy consists of a board with a large number of equal-sized holes and a set of 25 different coloured pegs. In every set made, some of the pegs are too big for the holes. The number of over-sized pegs in a randomly-chosen set is denoted by *X*. Given that $P(X \le 4) = 0.902$, use tables of cumulative binomial probabilities to find

(i) the probability that a randomly-chosen peg in a set is too big,	[2]
(ii) $P(X \ge 6)$.	[2]
Also find the mean and the variance of <i>X</i> .	[3]

3. The discrete random variable *X* has probability function

 $P(X=x)=cx^{2} \quad x=-3, -2, -1, 1, 2, 3$

(i) Show that $c = \frac{1}{28}$. [3] (ii) Calculate (a) E(X), (b) E(X²), (c) Var(X). [5]

4. Aldith and Bernard play a game. To decide who starts, they use a spinner in the form of a regular pentagon, whose five sectors are numbered 1, 2, 3, 4 and 5

The first person to score an even number starts the game. Aldith spins first. What assumptions must be made if a geometric distribution with parameter 0.4 is to be used to model the probability that an even number is scored on any

particular spin?[2]Find the probability that(i) Aldith starts the game with her second spin,[2](ii) Bernard starts the game with either his first or second spin,[3](iii) at least four spins are needed before the game is started.[2]

- 5. The heights, *h* m, of eight children were measured, giving the following values of *h*: 1·20, 1·12, 1·43, 0·98, 1·31, 1·26, 1·02, 1·41.
 - (i) Find the mean height of the children. [2]
 - (ii) Calculate the standard deviation of the heights. [2]

	The children w	ere also weighed. It w	as found that	at their ma	sses, w kg, v	were such tl	nat
		$\Sigma w = 324$	$\Sigma w^2 = 1353$	32. Σ	wh = 403.		
	(iii) Calculate	the product-moment c	orrelation co	efficient h	etween w a	nd <i>h</i> .	[4]
	(iv) Comment	briefly on the value vo	ou have obta	ined			[1]
		oneny on the value y	<i>fu nuve obtu</i>	inica.			[*]
6.	At a driving test centre, the probabilities of candidates in different age groups passing their						ing their
	theory and practical tests are given by the following table:						
		Under 20 years	20 - 23	5 years	Over	25 years	
	Practical	0.4	0	·5	C	.6	
	Theory	0.7	0	·8		x	
	On a certain mo	orning there are three	candidates :	Calum, ag	ed 18; Debb	oie, aged 22	; Ed, aged 25.
	Use the given f	igures to find the prob	ability that				
	(i) all three ca	indidates pass the prac	ctical test,				[1]
	(ii) exactly tw	o of the three pass the	practical tes	st,			[2]
	(iii) Calum pas	ses one component of	the test but	fails the o	ther.		[2]
	State any assum	nptions you have made	e, and discus	s their val	idity.		[2]
	If the probabilit	ty that exactly two of t	hese three c	andidates j	pass the theo	ory test is 0	·425,
	(iv) find the va	lue of <i>x</i> .		-	-	-	[4]
_							
7.	The heights of 110 applicants to the fire service ranged from 155 cm to 190 cm.						
	The distribution	n of these heights is sh	own in the g	grouped fre	equency tabl	le :	
	Height (cm)	155 - 160 160 - 165	165 - 170	170 - 175	175 - 180	180 - 185	185 - 190
	Frequency	7 12	18	21	25	17	10
	(i) On graph p	paper, construct a cum	ulative frequ	uency grap	h to illustra	te this data.	[4]
	(ii) Use your g	graph to estimate the n	nedian heigh	it and the i	nterquartile	range.	[3]
	(iii) On graph	paper, draw a box-and	-whisker plo	ot for this c	lata. Show	your scale.	[3]
	The box-and-whisker plot for another set of applicants is shown below .						
	150 155	160 165 170	175 1	80 185	190 1	95 200	Height (cm)
	(iv) Use the bo	x plots to compare the	e two sets of	data brief	lv		[2]

PMT

STATISTICS 1 (C) TEST PAPER 5 : ANSWERS AND MARK SCHEME

1.	(i) x (ii) x x x	
	X X X X	B2 B2 4
2.	(i) $P(X \le 4) = 0.902$ in B(25, <i>p</i>), so from tables $p = 0.1$	M1 A1
	(ii) $P(X > 6) = 1 - P(X \le 6) = 1 - 0.9905 = 0.0095$ $E(X) = 2.5$ $Var(X) = 2.5 \times 0.9 = 2.25$	M1 A1 B1 M1 A1 7
3.	(i) $c(9+4+1+0+1+4+9) = 1$ $c = \frac{1}{28}$ (ii) (a) $E(X) = 0$ (b) $E(X^2) = (81+16+1+1+16+81)/28 = 7$ (c) $Var(X) = 7-0 = 7$	M1 A1 A1 B1 M1 A1 M1 A1 8
4.	All scores are equally likely; successive trials are independent (i) $\frac{3}{5} \times \frac{3}{5} \times \frac{2}{5} = \frac{18}{125} = 0.144$ (ii) $\frac{6}{25} + \frac{54}{625} = \frac{204}{625} = 0.326$	B1 B1 M1 A1; M1 A1 A1
	(iii) $\left(\frac{3}{5}\right)^4 = \frac{81}{625} = 0.130$	M1 A1 9
5.	(i) $\Sigma h = 9.73$ $9.73 \div 8 = 1.22 \text{ m}$	M1 A1
	(ii) $\Sigma h^2 = 12.0319$ Var. = $12.0319 \div 8 - 1.21625^2 = 0.0247$ (iii) $S_{hh} = 0.1978$, $S_{ww} = 410$, $S_{hw} = 8.935$ r = 0.992 (iv) Shows strong positive correlation	M1 A1 M1 A1 A1 A1 B1 9
6.	(i) $0.4 \times 0.5 \times 0.6 = 0.12$ (ii) $0.4 \times 0.5 \times 0.4 + 0.6 \times 0.5 \times 0.6 + 0.4 \times 0.5 \times 0.6 = 0.38$	B1 M1 A1
	(iii) $0.4 \times 0.3 + 0.6 \times 0.7 = 0.54$ Assumed : different candidates' results independent : probably so	M1 A1 B1
	and results in theory and practical independent : probably not so (iv) $0.3 \times 0.8 \times x + 0.7 \times 0.2 \times x + 0.7 \times 0.8 \times (1 - x) = 0.425$ 0.56 - 0.18x = 0.425 $x = 0.75$	B1 M1 A1 M1 A1 11
7.	(i) Cum. freqs. 7, 19, 37, 58, 83, 100, 110 Graph drawn	B1 B3
	(ii) Median ≈ 174.5 $Q1 \approx 167.5$, $Q3 \approx 179.5$, so IQR = 12	B1 M1 A1
	(iii) Box plot drawn, with scale shown	B3
	(iv) First set taller on average, with more consistent heights	B1 B1 12

PMT